

Features and Benefits

- Largest aperture
 Unique 22 mm aperture for large format sensors e.g. Neo and Zyla sCMOS
- High quality achromatic lenses Image from 425 - 700 nm with minimal adjustment
- Highest transmission
 96% @ 425 700 nm
- Very low distortion < 0.5%
- Bypass mode
 Dovetail mount for precise insertion,
 exchange and bypass of optical elements
- Robust, compact and accurate
 Rigid structure provides optical and mechanical stability
- Convenient user adjustment
 User-controls for focus adjustment and
 2-axis cassette alignment are accessed via the front porch
- C-mount and CSU versions
 Couple directly to filter wheels,
 microscopes, C-lenses and spinning disk confocal scanners
- Various magnifications
 Match cameras to CSU aperture or control effective pixel size

Andor TuCam - High Performance, Two Camera Imaging Adapter

Andor's TuCam is a new generation two-camera adapter for macro or microscopic imaging applications. Available in C- or CSUX-mount, TuCam features include large aperture, exceptional transmission, very low distortion and high precision alignment using kinematic cassettes.

TuCam can be configured for simultaneous imaging from two similar cameras or as a switch between camera models with different imaging capabilities.

A full range of beam splitting optics are available with custom-designed kinematic cassettes for precision alignment. These include wavelength and polarization splitters of the highest quality as well as a first surface mirror for switching between cameras.

A variety of camera tubes and lenses is available to provide magnifications of 1.0x, 1.2x, 1.5x and 2.0x in each arm of the adapter. A filter wheel can also be integrated at the input of TuCam to enable pre-filtering of the desired emission band.

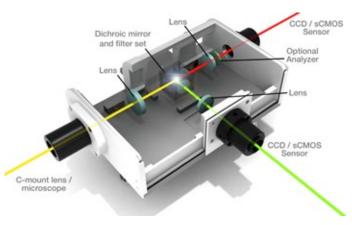
Specifications Summary

Wavelength range	400 - 750 nm
Aperture size	22 mm
Transmission	> 96%

Applications Guide

Real time multi color imaging	Biplane / dual focal plane imaging
Co-localization	• Calcium flux / ion signalling e.g. Fura, Indo-1, Fluo-3 dyes
Fluorescence Resonance Energy Transfer (FRET)	Dual wavelength TIRF microscopy
Ratiometric imaging	Dual wavelength real-time confocal microscopy
Super resolution	Fluorescence In Situ Hybridization (FISH) imaging
Anisotropy imaging including homo-FRET	Simultaneous fluorescence / DIC imaging

Specifications¹

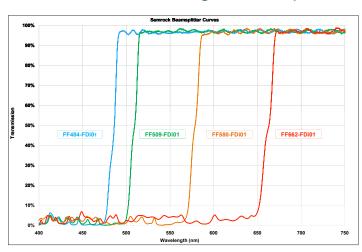

Wavelength range	400 - 750 nm
Throughput (C-mount version) *2	> 96% (425-675 nm)
Throughput (CSUX version) *2	> 93% (425 to 675 nm)
Chromatic aberration (focus shift) *3	< ± 0.2 mm (486 to 656 nm)
Distortion *4	< 0.5%
Differential distortion *5	< 0.5%
Maximum sensor format	22 mm diagonal
Field uniformity *6	> 90%
Chromatic magnification variation •7	< 25 μm (425 - 675 nm)
Camera field alignment error *8	< 32 μm

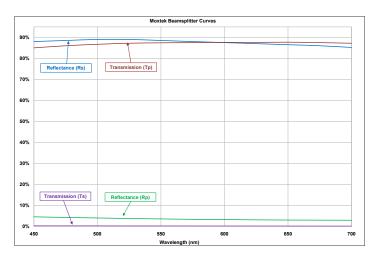
For detailed notes on performance figures annotated above, please refer to the last page of this specifications sheet.

Internal Optics

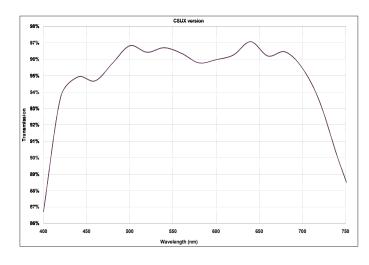
C-mount version

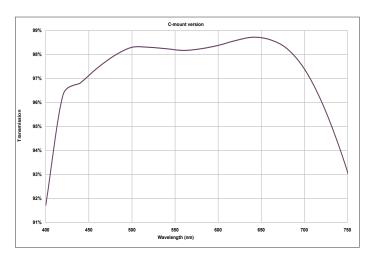
Typical System Layouts




C-mount version

Dichroics and Polarizing Beams Splitters




The graphs above shows the transmission and reflectance curves for Semrock imaging dichroic beamsplitters and Moxtek optically flat polarizing beamsplitters. Both types of beamsplitter are optimized for use at 45° angle of incidence.

Semrock's beamsplitters efficiently separate multicolored emission signals while maintaining excellent image fidelity. These dichroic beamsplitters are available for many popular fluorophore pairs. Their wide reflection and transmission bands and superb flatness allow for maximum light capture while minimizing image aberrations.

The Moxtek beam splitters deliver good transmission and excellent contrast. Optically flat polarizing beamsplitters are a specific product engineered for imaging applications. The quality of both the transmitted and reflected wavefront meets the requirements of modern scientific instruments.

Transmission Curves

Andor's TuCam utilizes lenses with broadband anti-reflection coatings specifically chosen to maximise system throughput in the 400 to 750 nm wavelength band. The CSUX version of TuCam also includes broadband dielectric mirrors that are optimized for this region. The transmission curve for the CSUX version of the TuCam is shown on the left and for the C-mount version on the right. This is a typical performance for these instruments and may vary slightly between individual units. Beam splitter optics are not included, please refer to the Semrock and Moxtek graphs above for performance.

Creating The Optimum Product for You

How to customize the TuCam:

Step 1.

Simply select from the 2 mounting options that best suit your needs from the selection opposite.

Step 2.

Select the magnification required for each of the camera ports.

Step 3.

Please select the appropriate optical cassettes

Step 4.

Choose appropriate wavelength or polarization filters.

Step 5.

For compatibility, please indicate which accessories are required.

Recommended Microscopy Softwares For TuCam

The following software packages have been verified under simultaneous dual camera acquisition mode, as well as offering functionality to merge and analyze data from each channel.

Please see 'Application and Technical Notes' section of the Multi-Wavelength Imaging brochure for further details.

Step 1.

Choose mounting type

X-SUT: For use with Revolution XD Yokogawa CSU-X fitted with customized external filter wheel S-CMT: Any C-mount device including microscope or lens

Step 2.

Please refer to the camera matching table on page 5 to select the appropriate magnification required for each of the 2 ports (this must be specified at the time of order). From the table below select the correct Part Codes:

TR-DCIX-SUT		TR-DCIS-CMT	
Magnification required	Part Code	Magnification required	Part Code
1x	TR-DCIX-100	1x	TR-DCIS-100
1.2x	TR-DCIX-120	1.2x	TR-DCIS-120
1.5x	TR-DCIX-150	1.5x	TR-DCIS-150
2x	TR-DCIX-200	2x	TR-DCIS-200

Step 3

To order optical cassettes for the system, please quote one or more of the following part numbers (we recommend one cassette per filter set to avoid risk of contamination when changing operating wavelength):

TR-DCIS-CA1-00 Blank cassette for mounting filter sets

TR-DCIS-CA4-01 Cassette with mirror - to allow switching between camera ports

Step 4.

Choose wavelength or polarization filter sets from the selection below:

TR-EMFS-F01 Emission GFP/RFP Dichroic Filter set

TR-EMFS-F02 Emission CFP/YFP Dichroic Filter set

TR-EMFS-F03 Polarizing filter set (Moxtek)

TR-EMFS-F04 Emission INDO 1 Dichroic Filter set

TR-EMFS-F05 Emission CAMELEONS-2 Dichroic Filter set

TR-EMFS-F09 Emission Cy3-Cy5 Dichroic Filter set

Step 5.

The optical height of the system is 110 mm. We recommend that cameras and microscopes are raised using one of the following accessories:

TR-IXON-MNT-110 Mounting feet for Clara, iXon3, iXon Ultra, Neo and Zyla cameras

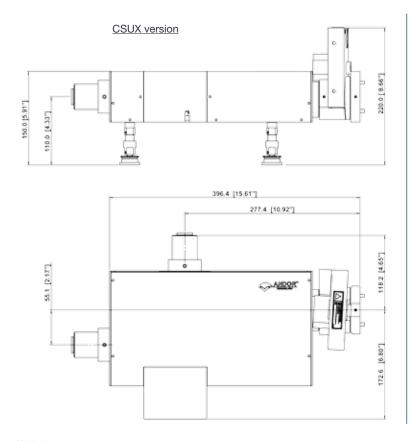
CR-CSUX-MNT-110 CSUX 110 mm Opt Axis Mount Kit

TR-OLIX-MNT-110 Mounting feet for Olympus IX71/81

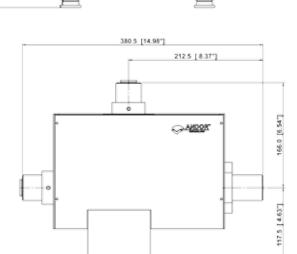
TR-NKTE-MNT-110 Mounting feet for Nikon TE-2000

TR-NKTI-MNT-110 Mounting feet for Nikon Eclipse Ti-E

TR-ZSAV-MNT-110 Mounting feet for Zeiss Axiovert 200 and Zeiss Axio Observer


The following accessory is also available to enable Nomarski DIC imaging and user alignment of new dichroics with the calibration slide:

TR-DCIS-DIC-MNT Internal mounting for DIC polarizer



Product Drawings

Dimensions in mm [inches]

C-mount version

Weights:

Cassette = 0.35 Kg [12 oz] Main unit = 5.5 Kg [12 lb 2 oz] Weights:

150.0 [5.917]

Cassette = 0.35 Kg [12 oz]

Main unit = 4 Kg [8 lb 13 oz]

Camera Matching

	0		
Andor Camera Type	Sensor Format	Pixel Size	Magnification Required to Fill Sensor (when fitted to CSUX)
Clara	1392 x 1040	6.45 μm	1x
iXon ₃ 860	128 x 128	24 µm	1x
iXon ₃ 885	1004 x 1002	8 μm	1.2x
iXon ₃ 888	1024 x 1024	13 µm	2x
iXon ₃ 897	512 x 512	16 µm	1.2x
iXon Ultra 897	512 x 512	16 µm	1.2x
Neo sCMOS	2560 x 2160	6.5 µm	N/A *9
Zyla sCMOS	2560 x 2160	6.5 µm	N/A *9

Note: We minimize chromatic aberrations in our systems, but other optics have their own limitations. Chromatic errors in the microscope objective are small, but scale by magnification at the detector. Consequently, we recommend software corrections for precision alignment.

Order Today

Need more information? At Andor we are committed to finding the correct solution for you. With a dedicated team of technical advisors, we are able to offer you one-to-one guidance and technical support on all Andor products. For a full listing of our regional sales offices, please see: andor.com/contact

Our regional headquarters are:

Europe

Belfast, Northern Ireland Phone +44 (28) 9023 7126 Fax +44 (28) 9031 0792

North America

Connecticut, USA Phone +1 (860) 290 9211 Fax +1 (860) 290 9566

Japan

Tokyo Phone +81 (3) 3518 6488 Fax +81 (3) 3518 6489

China

Beijing

Phone +86 (10) 5129 4977 Fax +86 (10) 6445 5401

Items shipped with your system:

1x Grid slide

1x Target for alignment

1x Appropriate allen key set for installation 1x Quick installation and alignment guide

1x Individual system performance booklet

Footnotes: Specifications are subject to change without notice.

- Specifications are based on the 1.2x CSU version of TuCam using a Semrock imaging-flat dichroic beamsplitter and 2 iXon₃ CCD cameras (512 x 512 format with 16 μm pixel size, 8.2 mm x 8.2 mm image area)
- 2. System throughput is obtained from the optical model of the system which considers the lens coatings, dielectric mirror performance, Fresnel effects, vignetting and internal transmittance.
- 3. Chromatic focal shift is the shift in the back focal length for the wavelength range 486 to 656 nm. Focal shifts for wavelengths above and below these values may vary.
- 4. Distortion manifests itself as different parts of the object being reproduced with different magnifications in the image after passing through an optical system. Distortion is expressed as a percentage deviation of a point in the image from the same point in the object.
- 5. Differential distortion is the difference in the distortion level of identical points in the two imaging paths. This measure is dependent on the quality and setup of the optical system.
- 6. Field uniformity is a measure of the flatness of the intensity distribution whilst under uniform illumination
- 7. Chromatic magnification (lateral color) is evident for off axis rays and is a consequence of the different wavelengths of light being refracted at differing angles as they traverse an optical system. Overlaying images taken at different wavelengths will highlight this effect as the different colors appear to have different magnifications. Careful selection of lens materials minimise this effect.
- 8. Alignment error is the maximum difference in the position of a particular point in one of the imaging paths to that in the other. The central quadrant of the image will have pixel alignment but due to optical affects the alignment error will increase towards the field edge.
- When using an sCMOS camera, a sub-array of pixels, matching the aperture, will be read. This will
 ensure that the Nyquist-Raleigh sampling criterion will be met at 1x magnification using a 100x
 objective.

Operating and Storage Conditions

Operating Temperature 15°C to 30°C ambient Relative Humidity < 70% (non-condensing) Storage Temperature -25°C to 50°C

MTuCamSS 0712 R1